

Industrial Selector Guide

HexPly[®] Prepregs

HexMC®-i Molding Composite

HexForce[®] Reinforcements

HiMax[™] Multiaxials

HexTool® Tooling Material

Polyspeed[®] Laminates and Pultruded Profiles

Hexcel in Industrial Markets

Hexcel's Industrial business focuses on three key performance-driven market segments: Wind Energy, Automotive and other specialty areas with focus on Sports & Leisure and Marine. As wind blades have increased in size to power more efficient turbines, and car designers are challenged with driving down CO2 emissions, lightweighting has become a priority. Hexcel's products are driving weight reduction and promoting greater manufacturing efficiencies in support of these trends. Hexcel is the most integrated composite solutions provider in the industry, experienced at all stages in the composites chain, from carbon fiber and fabrics (glass and carbon) to resin formulation for thermosetting prepregs, laminates and pultruded elements, molding materials, composite tooling, honeycomb and adhesives.

HexPly[®] Prepregs

Hexcel prepregs provide a tougher, lighter and stiffer alternative to conventional materials. They are specially formulated resin matrix systems that are reinforced with man made fibers such as carbon, glass and aramid. Prepreg is the ultimate composite material. The thermoset resin cures at elevated temperatures, undergoing a chemical reaction that transforms the prepreg into a solid structural material that is highly durable, temperature resistant, exceptionally stiff and extremely lightweight.

BexTool® Tooling Material

HexTool[®] is Hexcel's composite tooling material that, for the first time, enables the tolerance accuracy achieved with metals to be combined with the extreme lightness of carbon fiber composites. HexTool[®] molds are easy to repair and the dimensions are simple to modify. This new concept for lightweight, efficient large-scale tools is cost-effective compared with conventional composite tools and metal molds, especially those made from Invar[®].

Long tool life, ease of use, and the machinability of cured structures are some of the primary reasons HexTool[®] is being chosen for the tooling for parts on new generation aircraft worldwide.

HexMC[®]-i is a high performance sheet molding material, suitable for the high volume production of complex shapes and specifically designed for compression molding. With long fiber, and low resin content, HexMC[®]-i provides better mechanical properties than any other short or long fiber molding compound. The HexMC[®]-i epoxy system provides short cure cycles, from two minutes at 150°C/ 302°F depending on part thickness. Complex shapes can be achieved and inserts can be integrated in the molding process. This product is particularly beneficial for sports goods, automotive and marine applications, as well as a wide range of industrial components.

HexForce[®] Reinforcements

Hexcel is the leading manufacturer of woven reinforcements for composites, in glass, carbon and aramid fibers. Woven fabrics are the result of at least 2 threads which are interlaced at 0° (the warp) and 90 (the weft) with the weave style varied according to the required performance. Fabrics are available in a wide range of weights and 3 main weave styles: plain weave, twill weave and satin weave. Woven fabrics provide strength and stiffness in 2 directions, resulting in excellent handling characteristics and good drape. It is also possible to mix fibers to provide hybrid fabrics.

MiMax[™] Reinforcements

HiMax[®] Multiaxial fabrics also known as Non Crimp Fabrics are layers of unidirectional fiber that are assembled and stitched together. They provide strength and stiffness in multiple directions depending on the controlled orientation of the fibers. The range includes Biaxial, Triaxial, and Quadraxial. These reinforcements provide composites with stiffness and strength and are key products for many industrial markets.

Polyspeed[®] Laminates

Polyspeed[®] laminates are fiber-reinforced epoxy resin impregnated materials that are supplied in a cured state. Hexcel manufactures a wide range of pressed laminates made with unidirectional or multidirectional carbon, glass and aramid reinforcements as well as hybrid laminates which combine glass, carbon and aramid fibers to meet specific customer mechanical properties requirements. Being precured, laminates are chemically stable and have established mechanical properties, making them ready-to-use for compounding with foam or adhesives.

Laminates are used in layer constructions and absorb physical impacts in the final products such as skis, snowboards, floor panels and many other industrial applications.

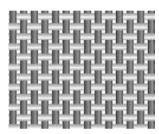
Polyspeed[®] Pultruded Carbon Profiles

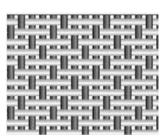
Pultrusion is a continuous process for the manufacture of composite profiles. Hexcel's Vert-Le-Petit site pioneered pultruded profiles manufactured with unidirectionnal and orientated fiber, mainly with carbon fibers, and offers a wide variety of pultruded sections including:

- Rods from 2 to 32mm diameter
- Flat sections from 5 to 100mm wide, with 0.5 to 10mm thickness
- Tubes from 4 to 100mm diameter and 1 to 10mm thickness (including telescopic serial).
- Specific profile sections can also be developed

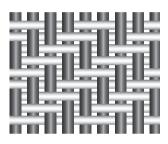
Polyspeed[®] pultruded profiles are made from either carbon fiber (standard, intermediate and high modulus), glass, quartz, basalt or other fibers as specified. The profile matrix is a Hexcel formulation based on epoxy and polyurethane thermoset resins allowing applications in the most severe environments up to 100°C as standard, and up to 200°C in certain specifications.

Hexcel pultruded profiles are used in many industrial applications including sports good, robotics, medical, building, telescope monopods and tripods.


Reinforcement Styles

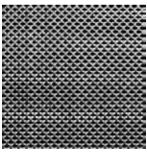

Woven Fabrics

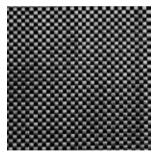
Fabrics consist of at least two threads which are woven together: the warp and the weft. The weave style can be varied according to crimp and drapeability. Low crimp gives better mechanical performance because straighter fibers carry greater loads; a drapeable fabric is easier to lay up over complex forms.


Main Weave Styles

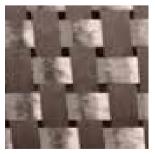
PLAIN WEAVE -Low drapeability/high crimp

SATIN WEAVE (4, 5, 8, 11) -Good drapeability/low crimp



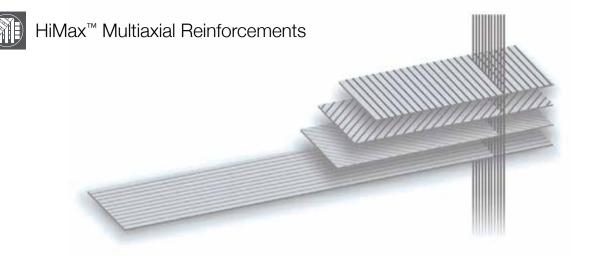

TWILL WEAVE (2/1, 3/1, 2/2) -Average drapeability/ average crimp

PrimeTex[®] Reinforcements


PrimeTex[®] is a range of carbon fabrics processed for a smooth, closed weave and uniform cosmetic appearance. The filaments in each tow are spread out, creating a thinner and more closely woven fabric, providing better mechanical properties and less porosity in a composite. PrimeTex[®] fabrics can also lower the mass in a structure when lighter weight is a key requirement.

PrimeTex[®] gives a clear visual benefit to the finished product, enhances the mechanical properties in a laminate and allows high K tow fibers to be used, for the lowest areal weight. The PrimeTex[®] range is available with HR, IM and HM fiber, from 3K up to 24K. PrimeTex[®] is ideal for Automotive, Recreation (skis, bikes) and marine applications (hulls and spars).

HexForce[®] 43199 UE1250 -Fiber coverage: 93%

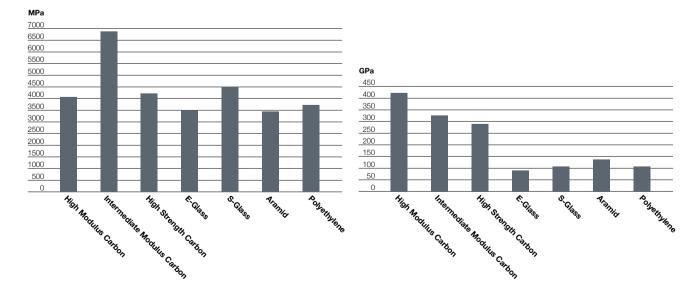


HexForce[®] 48192 C 1270 -Fiber coverage: 96%

PrimeTex[®] 43199 UE1250 S -Fiber coverage: 99%

PrimeTex[®] 48192 C 1270 S -Fiber coverage: 99.5%

Multiaxial Fabrics

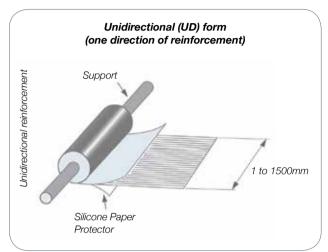

Hexcel's HiMax[™] multiaxial reinforcements are a unique concept non-crimp technology for industrial applications that provide strength and stiffness exactly where required, as a result of the preplacement of oriented unidirectional tapes joined by a novel stitching technology. HiMax[™] allows great flexibility of fiber orientation with previously unknown and still unmatched width adjustment capabilities. Thick materials can be manufactured using thin plies, providing customers with a cost effective solution that reduces production time. This new technology can accommodate a broad range of fibers, with total freedom regarding ply stack sequence and orientation. Using HiMax[™] technology Hexcel is able to make light single ply reinforcements from 100g/m² - 2.3oz/yd² that are balanced and provide full fiber coverage, at competitive prices.

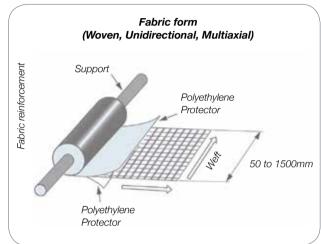
Fiber Properties

Fiber Properties

Fiber reinforcements provide composites with mechanical performance: excellent stiffness and strength, as well as good thermal, electric and chemical properties, while offering significant weight savings over metals. The range of fibers is extensive. The graphs below highlight the main criteria for fiber selection.

Tensile Modulus



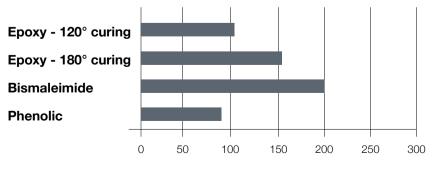

Tensile Strength

Prepreg Properties

What is a prepreg?

A prepreg consists of a combination of a matrix (or resin) and fiber reinforcement. It is ready to use in the component manufacturing process. It is available in:

What is the role of the matrix?


The role of the matrix is to support the fibers and bond them together in the composite material. It transfers any applied loads to the fibers, keeps the fibers in their position and chosen orientation. The matrix also gives the composite environmental resistance and determines the maximum service temperature of a prepreg. When selecting prepregs the maximum service temperature is one of the key selection criteria for choosing the best prepreg matrix.

A prepreg matrix is:

A formulation of many components: *Resins, curing agents, tougheners, fire retardants, accelerators.*

Different chemistries available depending on end-use: Epoxy, Phenolic, BMI, Cyanate Ester

All thermosetting chemistries

What are the prepreg matrix properties?

Maximum service temperature (C°)

Index

Transport

Automotive	HexPly [®] M10R / M9X <i>p.</i> 8 HexPly [®] M901 HexPly [®] M40E HexPly [®] M49 HexPly [®] M47 HexPly [®] M35-4 HexPly [®] M81 HexPly [®] M77 HexPly [®] M77CS	HexMC®-i M77
Marine	HexPly® M9X p. 8 HexPly® M79	HexForce® HS Carbon Reinforcementsp. 10HexForce® E glass Reinforcementsp. 11HiMax™ Multiaxial Reinforcementsp. 13
Rail	HexPly® M10R р. 8 HexPly® M34	HexForce [®] HM Carbon reinforcements

Sports Equipment

HexPly® M10E	р. 8
HexPly® M77	
HexPly® M77HF	
HexPly® M78.1	
HexPly® M49	
Polyspeed [®] Laminates	р. 8

HexMC®-i M77	р. 9
HexMC®-i M81	
HexForce [®] HS or HM Carbon reinforcements	p. 10
HexForce® E glass reinforcements	p. 12
HexForce® Specialties (Texalium®)	p. 13

Wind Energy

HexPly® M10R / M9X..... *p.* 8 HexPly® M79

Tooling

HexTool® M61..... **p. 9** HexTool® M81

📀 HexPly® Matrix

	Dry T _q	Typical Cyc		Cu Proc	ire cess	sive			ow	lishing	२००m ७ (Days)	8°C (0°F) IS	
HexPly [®] Resin System	Onset (DSC) °C (°F)	Temp °C (°F)	Time (mins)	Autoclave/ Press	Vacuum Only	Self Adhesive	Attributes	Controlled	High	Self Extinguishing	Outlife at Room Temperature (Day	Storage at -18°C months	Market
Ероху													
M9.X	125 (255)	120 (250)	30	Х	Х		Base line resin, various tack levels available		Х		42	18	Wind energy, Automotive, Marine, General Industrial
M901	175 (350)*	130 (265)	10	х			High T _g , fatigue and mechanical performance		Х		105	18	Automotive, General Industrial
M10E	115 (240)	120 (250)	30	х	х		Flexible cure (85°C-150°C)		Х		60	18	Sporting Goods, General Industrial, Automotive, Marine
M10R	120 (250)	120 (250)	60	Х	х		Base line resin long shelf life		Х		60	18	Marine, Automotive, General Industrial
M34	80 (180)	75 (165)	480	Х	х	Х	Low temperature cure. FST behaviour	Х		Х	10	12	Rail and Marine
M35-4	140 (285)	135 (275)	90	Х			Flexible cure	Х			60	12	High Performance Cars / Sporting Goods / Bike
M47	130 (265)	120 (250)	90	Х			Structural	Х		Х	30	12	High Performance Cars
M49	105 (220)	120 (250)	90	х	х		Aesthetic		Х		30	12	Automotive, Sporting Goods, Carbon Look, General Industrial
M77	125 (255)	150 (300)	2	х	х		Extra fast cure	Х			42	18	Automotive, Sporting Goods, General Industrial
M77CS	130 (265)	140 (285)	3	Х			Fast cure, transparency, surface quality	Х			42	18	Automotive, Carbon Look
M77HF	130 (265)	150 (300)	3	х	х		Quick cure. Hot de-mold		Х		30	12	Sporting Goods, General Industrial
M78.1	125 (255)	130 (265)	6	х	х		Very fast cure, excellent adhesion, environmental friendly	х			14	18	Sporting Goods
M79	95 (200)	90 (195)	130	х	х		Low temperature cure, low exotherm	Х			42	18	Wind Energy, Marine, Other industrial applications
M81	200 (390)	135 (275)	180**	Х			Tough	Х			14	12	High Performance Cars

All listed resin systems above may be used with Hexcel's range of reinforcement fabrics such as woven and multiaxial fabrics in carbon, glass and aramid fibers. Please contact Hexcel for more information. *postcure of 120min @150°C required ** = plus post cure

Polyspeed[®] Laminates

	ate und		nent		t Rate m²)	Both und		(°C)	Mech	anical
Туре	Laminat Weight Ungroun (g/m²)	Fabric Weight (g/m²)	Reinforcem	(g/ Warp	Weft	Thickness I Sides Gro (mm)	Width (mm)	Resin/T _g (Tensile Strength 0° Mpa	Tensile Modulus 0° Gpa
R	1151	840	R84	840	0	0.5 ± 0.05	38-1240	Epoxy / 125°	1100 ± 165	42 ± 6.3
R	1740	1200	R120	1200	0	0.8 ± 0.05	38-1240	Epoxy / 125°	1100 ± 165	41 ± 6.2
R-Combi	1883	1337	R94 LT397	1300	25	0.9 ± 0.05	38-1240	Epoxy / 125°	1050 ± 158	39 ± 5.9
EV	825	470	470R	372	90	0.4 ± 0.05	38-1240	Epoxy / 125°	560 ± 84	27 ± 3.8
EV	1210	750	750R	504	240	0.6 ± 0.05	38-1240	Epoxy / 125°	450 ± 68	20 ± 3
EV	1541	2 x 470	2x470R	744	180	0.8 ± 0.05	38-1240	Epoxy / 125°	570 ± 86	25 ± 3.7
Grid	682	566	551GI	240	300	0.75	38-1240	Epoxy / 125°	240 ± 36	11.5 ± 1.7

R= UD glass fiber, R-kombi= UD glass fiber + woven fabric, EV= bidirectional reinforcement, GRID= woven grid reinforcement

HexTool[®] Tooling Material

				Cure Process	dhesive	es	Flow		lishing	3oom ture	-18°C ths	
	Dry T _g Onset (DMA) °C (°F)	Temp °C (°F)	Time (mins)	Autoclave/ Press Vacuum Only	Self Adhe	Attributes	Controlled	High	Self Extinguishing	Outlife at F Temperal	Storage at (0°F) mor	Market
HexTool [®] M61	275 (530)	190 (375)	240**	Post cure 16h at 220°c	X	BMI				20	12	Tooling - 180° C part cure cycle
HexTool [®] M81	220 (430)	125 (255)	360**	After post cure 2h at 205°c	x	Ероху				20	12	Tooling - 120° C part cure cycle and fast prototyping for any composite parts

** Plus post cure

HexMC[®]-i Molding Concept

	Dry T ₉ Onset (DMA) °C (°F)		ure Cycle Time (mins)	Autoclave/ Press d ann	Vacuum Only	Self Adhesive	Attributes	Controlled	High	Self Extinguishing	Outlife at Room Temperature (days)	Storage at -18°C (0°F) months	Market
HexMC [®] -i M77	120 (250)	150 (300)	2	x				x			42	18	Automotive, Sporting Goods, General Industrial
HexMC [®] -i M81	210 (410)	180 (355)	30**	X				х			14	12	Automotive, Sporting Goods

* Higher T_g can be obtained with post cure cycle

** Plus post cure

Searbon Reinforcements

Weight	Style	PrimeTex®	Weave	Weigh	t Rate		Count s/cm)	Reinforce	ment Yarn	Thickness
(gsm)		Quality		Warp	Weft	Warp	Weft	Warp	Weft	(mm)
Balanced	Fabrics - Hig	h Strength F	ibers							
98	G0801		PLAIN	50	50	6.7	6.7	1K HS	1K HS	0.09
100	43098	Х	PLAIN	50	50	2.3	2.3	3K HS	3K HS	0.09
120	41120		PLAIN	50	50	9	9	1K HS	1KHS	0.12
160	43161	Х	PLAIN	50	50	4	4	3K HS	3K HS	0.16
160	43162	Х	TWILL 2x2	50	50	4	4	3K HS	3K HS	0.16
193	48192	Х	PLAIN	50	50	1.2	1.2	12K HS	12K HS	0.20
193	48194	Х	TWILL 2x2	50	50	1.2	1.2	12K HS	12K HS	0.20
200	43199	Х	PLAIN	50	50	5	5	3K HS	3K HS	0.20
200	43200	Х	TWILL 2x2	50	50	5	5	3K HS	3K HS	0.20
245	43245	Х	TWILL 2x2	50	50	6	6	3K HS	3K HS	0.25
285	G1174		TWILL 4x4	50	50	7	7	3K HS	3K HS	0.29
285	43285		TWILL 2x2	50	50	7	7	3K HS	3K HS	0.29
300	48302	Х	TWILL 2x2	50	50	1.9	1.9	12K HS	12K HS	0.30
330	49331	Х	PLAIN	50	50	0.9	0.9	24K HS	24K HS	0.32
370	48370	Х	TWILL 2x2	50	50	2.4	2.4	12K HS	12K HS	0.38
400	46402		TWILL 2x2	50	50	5	5	6K HS	6K HS	0.40
400	48400	Х	PLAIN	50	50	2.5	2.5	12K HS	12K HS	0.41
600	48600		TWILL 2x2	50	50	3.7	3.7	12K HS	12K HS	0.62
660	48661		TWILL 2x2	50	50	4.1	4.1	12K HS	12K HS	0.66

PrimeTex® is a range of carbon fabrics that have been processed for a smooth, closed weave and enhanced uniform appearance.

Unidirect	Unidirectional Fabrics - High Strength Fibers											
175	43175		UD PW	96	4	8.4	6.9	3K HS	EC511	0.18		
185	43185		UD PW	85	15	8.4	4	3K HS	1KHS	0.19		
300	48300		UD PW	99	1	3.7	3	12K HS	EC511	0.32		
530	48520		UD	94	6	6.2	4.4	12K HS	EC968	0.55		

M/HM Carbon Reinforcements

Weight	STVIA		Weave	Weight Rate		Fiber Count (Yarns/cm)		Reinforcement Yarn		Thickness		
(gsm)		Quality		Warp Weft Warp		Warp	Weft	Warp	Weft	(mm)		
Balanced Fabrics - High Strength Fibers												
200	46200 W	Х	TWILL 2x2	50	50	4.5	4.5	6K IM7	6K IM7	0.20		
280	46280 W	Х	SATIN 5	50	50	6.5	6.5	6K IM7	6K IM7	0.28		
150	48152 ZY	Х	TWILL 2x2	50	50	1.7	1.7	HM63	HM63	0.15		
200	48200 ZY	Х	TWILL 2x2	50	50	2.3	2.3	HM63	HM63	0.20		
285	48287 ZY	Х	SATIN 5	50	50	3.3	3.3	HM63	HM63	0.28		

E Glass Reinforcements

Weight	Style	Weave	Weigh	t Rate	Fiber (Yarn:	Count s/cm)	Reinforce	ment Yarn	Thickness	
(gsm)			Warp	Weft	Warp	Weft	Warp	Weft	(mm)	
25	00106	PLAIN	50	50	22	22	EC5.5	EC5.5	0.02	
48	01080	PLAIN	56	44	24	19	EC5 11	EC5 11	0.04	
70	02112	PLAIN	52	48	16	15	EC7 22	EC7 22	0.05	
86	00235	PLAIN	49	51	12	12.5	EC9 34	EC9 34	0.06	
105	00220	4H SATIN	51	49	24	23	EC7 22	EC7 22	0.08	
105	02116	PLAIN	51	49	24	23	EC7 22	EC7 22	0.08	
125	01510	PLAIN	65	35	11.5	6.3	EC9 34x2	EC9 68	0.09	
125	01522	PLAIN	53	47	9.6	8.5	EC9 34x2	EC9 34x2	0.09	
160	01717	PLAIN	52	48	11.8	10.7	EC9 68	EC9 68	0.12	
162	01039	TWILL 2x2	51	49	11.8	11.5	EC9 68	EC9 68	0.12	
202	01035	TWILL 2x2	50	50	14	14	EC9 68	EC9 68	0.15	
202	07628	PLAIN	59	41	17	11.8	EC9 68	EC9 68	0.15	
202	01266	PLAIN	60	40	8.9	6	EC9 136	EC9 136	0.15	
204	01184	PLAIN	51	49	7.4	7.2	EC9 68x2	EC9 136	0.15	
206	00471	PLAIN	51	49	7.4	7.2	EC9 68x2	EC9 68x2	0.15	
290	01202	TWILL 2x2	50	50	7	7.2	(EC9 68)x3	EC9 204	0.23	
290	01203	PLAIN	50	50	7	7.2	(EC9 68)x3	EC9 204	0.23	
300	07581	8H SATIN	51	49	22	21	EC9 68	EC9 68	0.23	
300	07781	8H SATIN	52	48	23	21	EC 66	EC66	0.23	
390	01113	TWILL 2x2	53	47	5.9	6.6	(EC9 68)x5	(EC9 136)x2	0.30	
600	01038	TWILL 2x2	50	50	7.3	7.3	(EC9 136)x3	(EC9 136)x3	0.52	
600	01137	8 SATIN	50	50	11.2	11.2	(EC9 136)x2	(EC9 136)x2	0.52	
Woven Unidire	ectional									
190	1022	UD 4H SATIN	80	20	22	10.5	EC9 68	EC9 34	0.14	
290	1543	UD 4H SATIN	90	10	19	11.8	EC9 68 x2	EC7 22	0.22	
315	1031	UD 4H SATIN	87	13	19.5	11	EC9 136	EC9 34	0.24	
430	1017	UD PLAIN	90	10	5.7	6.3	(EC9 136)x5	EC9 68	0.33	

Sinish for E Glass Fabrics

Matrix	Description	Ероху	Polyester	Vinyl Ester	Phenolic
Finish					
TF 950 - Z 6040	Epoxy Silane	Х	Х	Х	
TF 970	Amino Silane	Х	Х	Х	
A 1100	Amino Silane	Х			Х
TF970 CLEAR	Amino Silane	Х	Х	Х	

Specialties

Weight (gsm)	Style	Weave	Weight Rate		Fiber Count (Yarns/cm)		Reinforcement Yarn		Thickness
			Warp	Weft	Warp	Weft	Warp	Weft	(mm)
Polyamide Pee	l Ply								
83	T0470N	PW	58	42	19	15	PA66 235	PA66 235	0.06
100	T0098	PW	54	46	22	18.5	PA66 235	PA66 235	0.06
Aesthetic Glass	s Fabrics								
202	1035 TEXALIUM®*	TWILL 2X2	50	50	14	14	EC9 68	EC9 68	0.15
290	1202 TEXALIUM®*	TWILL 2X2	50	50	7	7.2	(EC9 68)x3	EC9 204	0.23

* TEXALIUM[®] : glass fabrics aluminum coated on one side

Injectex [®] E Gla	ss Fabrics								
295	21186	TWILL 2X2	50	50	22.2	5.5	EC9 68	EC9 68x4	0.22
315	EB315	TWILL 2X2 POWDERED	50	50	22.2	5.5	EC9 68	EC9 68x4	0.22
400	21180	3X / FORMABLE	50	50	14.8	14.8	EC9 68x2	EC9 68x2	0.31
420	EF420	3X / FORMABLE POWDERED	50	50	14.8	14.8	EC9 68x2	EC9 68x2	0.31
1000	21156	3X / FORMABLE	51	49	16.3	15.5	EC13 300	RO320	0.77
1030	E1030	3X / FORMABLE POWDERED	51	49	16.3	15.5	EC13 300	RO320	0.77
Injectex [®] Carb	on Fabrics								
600	GF600 1000	3X / FORMABLE	50	50	7.4	7.4	6K HS	6K HS	0.60
630	GF630 1000	3X / FORMABLE POWDERED	50	50	7.4	7.4	6K HS	6K HS	0.60
Aramid Carbor	n Hybrids								
170	73172	PLAIN	37	37	3.4	3.4	3K HS	AR HM 1210	0.19
			13	13	1.7	1.7	AR HM 1210	3K HS	
170	G0882	TWILL 2x1	37	22	3.3	1.8	3K HS	3K HS	0.17
			13	28	1.8	3.3	AR HM 1210	AR HM 1210	
210	73210	TWILL 2x2	22	22	2.2	2.2	3K HS	3K HS	0.22
			28	28	4.4	4.4	AR HM1210	AR HM1210	

Powdering for Preforming & Stabilization

Ref	Compatibility	Storage at Room Temperature	Preforming	Applicable for	Injection Temperature	Curing Temperature of Resin System
HP03	PU & Epoxy	1 year	Starting at 80°C, Recommended 100°C	LRI	<45°C	>50°C
E01	Ероху	Up to 1 year	Starting at 80°C, Recommended 100°C	RTM/LRI	No restriction	Any

Powdering: all fabrics can be epoxy powdered on 1 or 2 sides in order to facilitate preforming and dimensional stabilization

🎯 Aramid Fabrics

Weight	Style	Weave	Weight Rate		Fiber Count (Yarns/cm)		Reinforcement Yarn		Thickness
(gsm)			Warp	Weft	Warp	Weft	Warp	Weft	(mm)
175	20967	PLAIN	51	49	6.7	6.5	HM 1210	HM 1210	0.2
175	20968	TWILL 2x2	51	49	6.7	6.5	HM 1210	HM 1210	0.2
175	20914	4H SATIN	51	49	6.7	6.5	HM 1210	HM 1210	0.2
320	21071	5H SATIN	51	49	6.3	6.2	HM 2400	HM 2400	0.4

MiMax[™] Multiaxial Reinforcements

Carbon Multiaxials

Available in a range of fiber types from 3k to 50k including PAN and Pitch fibers. Fabric weights from 50gsm up to 1600gsm can be produced with fabric widths from 25mm through to 1600mm.

- Unidirectionals, (Stitched, Heat Set Woven, Infusion and Bonded)
- +/- 22 Biaxials, (Standard and Lightweight)
- +/- 60 lightweight carbon multiaxials in 75gsm
- +/- 45 Biaxials, (Standard, Ultra lightweight, High Drape and Hybrid)
- 0/90 Biaxials, Triaxials, and Quadraxials. (Standard, Unbalanced, Heavyweight, Warp, Weft and Hybrid)

Glass Multiaxials

Available in a range of fabric weights from as low as 250gsm to 6000gsm and a variety of different fabric widths from 25mm to 2540mm.

- Unidirectionals (Stitched, Heat Set Woven and Infusion)
- +/-45 Biaxials (Standard, Combination, Highdrape and Hybrid)
- 0/90 Biaxials (Standard, Combination, High-drape and Hybrid)
- Triaxials (Warp, Weft, Hybrid)
- Quadraxials (Standard and Mesh)

Aramid Multiaxials

Available in a range of fabric weights from as low as 160gsm to 600gsm and a variety of widths from 250mm to 2540mm.

- Standard +/- 45
- Hybrid +/- 45
- Hybrid 0/90

Hybrid Fabrics / Natural Fibres

A range of Carbon / Glass, Aramid / Glass hybrid fabrics can be supplied, as well as natural fibers such as Flax.

Fabrics For Infusion

Our Infusion fabrics have been specially developed to ensure rapid and consistent infusion rates during production. Additional features include:

- Infusion fabrics that incorporate a core manufactured from polypropylene, polyester, natural fibre and glass fabrics
- Multi-stack fabrics ideal for infusing large monolithic structures in fewer layers

Recycled Fabrics

• reForm Fabric

DPA Fabrics

HiMax[™] DPA (Dot Pattern Adhesive) fabrics are pre-tacked for ease of laying up multiple fabrics in preparation for infusion. Designed to provide the optimal level of tack while minimizing additional weight, DPA fabrics eliminate the need to apply sprayon adhesives to the fabric surface. This minimizes the risk of inconsistent application, and in turn reduces issues with restricted resin flow, contamination and excess weight. HiMax[™] DPA fabrics have a controlled and consistent level of adhesive applied by machine in dots across the whole fabric, typically weighing just 3g/m2. This enables manufacturers to simply unroll and apply the HiMax[™] fabric to the mold, add a layer of core material or other fabric layers, and reposition if desired, before introducing resin. The spacing and spread of the adhesive has been optimized to reduce interference with the resin flow. The health and safety benefits are clear: solvent-based adhesives are no longer being sprayed randomly in the working environment

Notes

Hexcel Product Family

HexTow® Carbon Fiber

HexForce® Reinforcements

HiTape[®] Advanced Reinforcements

HexPlv® Prepregs

HexFlow® Resins

Modipur[®] Polyurethane

Redux[®] & HexBond[™] Adhesives

HiMax™

Multiaxial Reinforcements

HexMC[®] Molding Composite

HexWeb[®] **Honeycomb Core**

HexWeb[®] **Engineered Core**

HexTool® Tooling Material

For more information

Hexcel is a leading worldwide supplier of composite materials to aerospace and industrial markets. Our comprehensive range includes:

- HexTow[®] carbon fibers
- HexForce[®] reinforcements
- HiMax[™] multiaxial reinforcements
- HexPly[®] prepregs

- HexMC[®] molding compounds
- HexFlow[®] RTM resins
- Redux[®] & HexBond[™] adhesives
 Engineered core
- HexTool[®] tooling materials
- HexWeb[®] honeycombs
- Acousti-Cap[®] sound attenuating honeycomb
- Engineered products
- Polyspeed[®] laminates

For US quotes, orders and product information call toll-free 1-866-601-5430. For other worldwide sales office telephone numbers and a full address list, please go to:

http://www.hexcel.com/contact/salesoffice

©2018 Hexcel Corporation – All rights reserved. Hexcel Corporation and its subsidiaries ("Hexcel" believe that the technical data and other information provided herein was materially accurate as of the date this document was issued. Hexcel reserves the right to update, revise or modify such technical data and information at any time. Any performance values provided are considered representative but do not and should not constitute a substitute for your own testing of the suitability of our products for your particular purpose. Hexcel makes no warranty or representation, express or implied, including but not limited to the implied warranties of merchantability and fitness for a particular purpose, and disclaims any liability arising out of or related to, the use of or reliance upon any of the technical data or information contained in this document.

