

AMPRO™ BIO

BIO-BASED EPOXY MULTIPURPOSE SYSTEM

- ¬ Accredited TUV OK Biobased resin 2* & Hardener 1* → Mixed system 2* equivalent
- ¬ Simple 3:1 resin to hardener mix ratio by volume
- Ideal for coating applications in particular wood coating
- ¬ Suitable for gluing, laminating & filling when used with the Gurit range of fillers
- ¬ Good through-cure, even at low (+5°C) temperatures
- ¬ Tack / blush / bloom-free surface after cure
- ¬ Improved coating performance with higher gloss & reduced surface defects
- Improved bonding and flexibility for wood coating and bonding
- Improved environmental and UV resistance
- ¬ Low Toxicity Formulation

INTRODUCTION

AMPRO™ BIO is a simple to use, all-purpose epoxy which can be used for gluing, coating, laminating and filling. With its fast, low temperature curing hardener and easy 3:1 mix ratio by volume, AMPRO™ BIO provides a quick and convenient way of using one epoxy system for a very wide range of tasks.

AMPRO™ BIO has been built on the well-established SP 106 which has been the primary epoxy system for the manufacture and repair of wooden boats for over 20 years.

By using the Gurit range of filler powders, an AMPROTM BIO resin and hardener mix can be turned into a very effective adhesive or filling compound. Details of this filler range, and how to use them, are contained in a separate information sheet (Filler Guide) and typical filling and fairing mixes (resin / hardener / filler) are shown in this data sheet.

SYSTEM	PROPERTIES AT 25°C	MIXED 150g TACK-OFF EARLIEST VISCOSITY* POT-LIFE* TIME* SANDING TIME*					
esin	Product Information, Instructions for Us	duct Information, Instructions for Use and Health & Safety					
BIO Re	AMPRO™ Fast Hardener	1260 cP 1/2 hour		1 ¼ hours	20 hours	4	
PRO M	AMPRO™ Slow Hardener	1100 cP	¾ hours	4 ½ hours	20 hours	5	
AMP	AMPRO™ Extra-slow Hardener	1050 cP	1 hours	6 hours	20 hours	6	

*working time properties are highly subjective to ambient conditions and should be used an approximate guideline for all AMPRO™ systems at 25°C. Please refer to the corresponding page of this document for specific testing methods used.

PRODUCT INFORMATION

AVAILABILITY

The product is available in a number of formats please contact your local customer support representative for more information.

TRANSPORT & STORAGE

The resin and hardeners should be kept in securely closed containers during transport and storage. Any accidental spillage should be soaked up with sand, sawdust, cotton waste or any other absorbent material. The area should then be washed clean (see appropriate Safety Data Sheet). Adequate long term storage conditions will result in a shelf life of 2 years for both the resin and

COMPONENT	UNITS	10 – 25°C
AMPRO™ BIO Resin	months	24
AMPRO™ Hardeners	months	24

hardeners. Storage should be in a warm dry place out of direct sunlight and protected from frost. The storage temperature should be kept constant between 10°C and 25°C, cyclic fluctuations in temperature can cause crystallization. Containers should be firmly closed. Hardeners, in particular, will suffer serious degradation if left exposed to air. Typically the physical properties of the hardener are not affected, however the color may darken over time. Be aware of a possible mixed system color change if very old and new hardeners are used on the same project.

INSTRUCTIONS FOR USE

The product is optimised for use at temperatures between 15 and 25°C. At lower temperatures the product thickens and may become unworkable, however is designed to cure if required at temperatures as low as +5°C. At higher temperatures working times will be significantly reduced. Maximum relative humidity for use is 70%.

MIXING AND HANDLING

Accurate measurement and thorough mixing are essential when using this system, and any deviation from the prescribed mix ratios will seriously degrade the physical properties of the cured system. The resin and hardener must be stirred well for two minutes or more, with particular attention being paid to the sides and bottom of the container. As soon as the material is mixed the reaction begins. This reaction produces heat (exothermic), which will in turn accelerate the reaction. If this mixed material is left in a confined mixing vessel the heat cannot disperse and the reaction will become uncontrollable.

FILLING AND FAIRING MIXES

All filler additions are approximate and can be adjusted by the user to achieve the desired consistency.

DESCRIPTION		EASE OF	WATER	FILLER Q	UANTITY*	AMPRO SILIC	A ADDITION*	APPROX.	APPROX.
		SANDING	RESISTANCE		FOR 1KG		FOR 1KG	DENSITY	VOLUME
Brown, Low Density	Microballons	Easy	Moderate	25 - 30	250 - 300 g	2 - 3	20 - 30 g	0.6 g/cm ³	2.2 Litres
White, Low Density	Glass Bubbles	Moderate	High	35 - 40	350 - 400 g	3 - 5	30 - 50 g	0.5 g/cm ³	3.0 Litres

^{*}calculated by weight relative to the mixed system of resin and hardener

ADHESIVE MIXES

All filler additions are approximate and can be adjusted by the user to achieve the desired consistency.

DESCRIPTION	FILLER TYPE	FILLER QUANTITY*		AMPRO SILICA ADDITION*		APPROX.	APPROX.
	FILLER TIPE		FOR 1KG		FOR 1KG	DENSITY	VOLUME
Brown, Low Density	Microballons**	15 - 20	150 - 200 g	4 - 5	40 - 50 g	0.7 g/cm ³	1.8 Litres
White, Low Density	Glass Bubbles**	15 - 20	150 - 200 g	5 - 6	50 - 60 g	0.6 g/cm ³	2.0 Litres
Opaque, High Strength	Microfibres	7 - 10	70 - 100 g	3 - 4	30 - 40 g	0.9 g/cm ³	1.0 Litres

^{*}calculated by weight relative to the mixed system of resin and hardener

COVERAGE

For further information please refer to the Gurit Filler Guide

To Tartio intermation product for to the Cart I mer	at tallion monitorion product for the date that all and the canal									
THICKNESS (PER COAT)	50 - 150 MICRONS	COMMENT								
Coating Coverage (at 150 microns)	Approximately 7 m ² /litre	Dependant on temperature, surface inclination, surface porosity and evenness								
Adhesive Coverage	Approximately 3 - 4 m ² /litre	Dependant on temperature, surface inclination, surface porosity and evenness								

INSTRUCTIONS FOR USE

The following points must be considered:

- Skin contact must be avoided by wearing protective gloves. Gurit recommends the use of disposable nitrile gloves for most applications. The use of barrier
 creams is not recommended, but to preserve skin condition a moisturising cream should be used after washing.
- 2. Protective clothing should be worn when mixing, laminating or sanding. Contaminated work clothes should be thoroughly cleaned before re-use.
- 3. Eye protection should be worn if there is a risk of resin, hardener, solvent or dust entering the eyes. If this occurs flush the eye with water for 15 minutes, holding the eyelid open, and seek medical attention.
- 4. Ensure adequate ventilation in work areas. Respiratory protection should be worn if there is insufficient ventilation. Solvent vapours should not be inhaled as they can cause dizziness, headaches, loss of consciousness and can have long term health effects.
- 5. If the skin becomes contaminated, then the area must be immediately cleansed. The use of resin-removing cleansers is recommended. To finish, wash with soap and warm water. The use of solvents on the skin to remove resins etc must be avoided.
 Washing should be part of routine practice:
 - ¬ before eating or drinking
 - before smoking
 - before using the lavatory
 - after finishing work
- 6. The inhalation of sanding dust should be avoided and if it settles on the skin then it should be washed off. After more extensive sanding operations a shower/bath and hair wash is advised.

APPLICABLE RISK & SAFETY PHRASES

Gurit produces a separate full Safety Data Sheet for all hazardous products. Please ensure that you have the correct SDS to hand for the materials you are using before commencing work.

^{**}Microfibres are always preferred for load-carrying adhesive joints

AMPRO™ BIO RESIN & FAST HARDENER

MIXING AND HANDLING

PROPERTY	UNITS	AMPRO™ BIO RESIN	FAST HARDENER	MIXED SYSTEM
Colour	-	Brown Tint	Amber	Brown Tint
Mix ratio by weight	Parts by weight	100	30	-
Mix ratio by volume	Parts by volume	3	1	-
Density at 21 °C (ISO 1183-1B)	g/cm ³	1.10	0.99	1.07

COMPONENT & MIXED SYSTEM PROPERTIES*

PROPERTY	UNITS	15°C	25°C	TEST METHOD
AMPRO™ BIO Resin Viscosity	сР	3028	979	-
AMPRO™ Fast Hardener Viscosity	сР	1918	707	-
Initial Mixed System Viscosity	сР	-	1263	-

WORKING TIME PROPERTIES*

PROPERTY	UNITS	20°C	TEST METHOD
Thin-Film Gel-time	hrs:min	01:19	-
Pot-life (150 g, mixed in water)	hrs:min	00:23	Tecam Gel Time
Tack-off Time	hrs:min	02:40	Internal Gurit Method
Earliest Sanding Time**	hrs:min	16:00	Internal Gurit Method

^{*}working time properties are highly subjective to ambient conditions and should be used as an approximate guideline for all AMPRO™ systems
**it is not recommended to apply at low temperatures, but a cure temperatures as low as +5°C is possible

AMBIENT CURE THERMAL PERFORMANCE PROGRESSION at 21°C

PR	OPERTY PROGRESSION AT 21°C	SYMBOL	UNITS	7 DAYS	14 DAYS	21 DAYS	28 DAYS	TEST STANDARD
Gla	ass Transition Temperature	Tg ₁	°C	44	46	46	47	ISO 6721 (DMA)

CURED RESIN PROPERTIES

PROPERTIES	SYMBOL	UNITS	28 DAYS AT 21°C	16 HRS AT 50°C***	TEST STANDARD
Glass Transition Temperature	Tg ₂	°C	-	55	ISO 11357 (DSC)
Ultimate Glass Transition Temp.	UTg ₂	°C	-	62	ISO 11357 (DSC)
Glass Transition Temperature	Tg ₁	°C	47	55	ISO 6721 (DMA)
Ultimate Glass Transition Temp.	UTg₁	°C	53	-	ISO 6721 (DMA)
Tensile Strength	$\sigma_{\scriptscriptstyle T}$	MPa	40.7	42.0	ISO 527-2
Tensile Modulus	Eτ	GPa	1.9	2.0	ISO 527-2
Tensile Elongation	$\epsilon_{\scriptscriptstyle T}$	%	30.7	30.5	ISO 527-2
Flexural Strength	$\sigma_{\scriptscriptstyle F}$	MPa	70.3	70.5	ISO 178
Flexural Modulus	E _F	GPa	2.1	2.0	ISO 178
Flexural Elongation	$\epsilon_{\scriptscriptstyle{F}}$	%	>12.0	>12.0	ISO 178
28 Day Water Uptake (coupon size 60x60x1mm)	-	mg (%)	-	48 (0.6)	ISO 62
ILSS (8 x RE301H8, 50% resin content)	X _{ILSS}	MPa	-	34	ISO 14130

^{*}initial cure of 24 hours at 21°C

ADHESIVE PERFORMANCE (AFTER 16 HRS AT 50°C CURE)

PROPERTIES	SYMBOL	UNITS	PLYWOOD	TEAK	STEEL	TEST STANDARD
Lapshear Strength	τ	MPa	2.3 (failed in wood)	6.0 (failed in wood)	17.7	BS 5350 Part C5
Lapshear Strength Wet Retention (saturated for 28 days at 23°C in water)	$ au_{ ext{wet}}$	MPa	-	-	15.4	BS 5350 Part C5

AMPRO™ BIO RESIN & SLOW HARDENER

MIXING AND HANDLING

PROPERTY	UNITS	AMPRO™ BIO RESIN	SLOW HARDENER	MIXED SYSTEM
Colour	-	Brown Tint	Amber	Brown Tint
Mix ratio by weight	Parts by weight	100	30	-
Mix ratio by volume	Parts by volume	3	1	-
Density at 21 °C (ISO 1183-1B)	g/cm ³	1.10	1.00	1.09

COMPONENT & MIXED SYSTEM PROPERTIES*

PROPERTY	UNITS	15°C	25°C	TEST METHOD
AMPRO™ BIO Resin Viscosity	сР	3028	979	-
AMPRO™ Slow Hardener Viscosity	сР	570	250	-
Initial Mixed System Viscosity	сР	-	1100	-

WORKING TIME PROPERTIES*

PROPERTY	UNITS	20°C	TEST METHOD
Thin-Film Gel-time	hrs:min	01:54	-
Pot-life (150 g, mixed in water)	hrs:min	00:43	Tecam Gel Time
Tack-off Time	hrs:min	04:30	Internal Gurit Method
Earliest Sanding Time**	hrs:min	20:00	Internal Gurit Method

[&]quot;working time properties are highly subjective to ambient conditions and should be used as an approximate guideline for all AMPRO™ systems
**it is not recommended to apply at low temperatures, but a cure temperatures as low as +5°C is possible in the time stated

AMBIENT CURE THERMAL PERFORMANCE PROGRESSION at 21°C

PROPERTY PROGRESSION AT 21°C	SYMBOL	UNITS	7 DAYS	14 DAYS	21 DAYS	28 DAYS	TEST STANDARD
Glass Transition Temperature	Tg ₁	°C	40	43	44	45	ISO 6721 (DMA)

CURED RESIN PROPERTIES

PROPERTIES	SYMBOL	UNITS	28 DAYS AT 21°C	16 HRS AT 50°C***	TEST STANDARD
Glass Transition Temperature	Tg₁	°C	45	49	ISO 6721 (DMA)
Ultimate Glass Transition Temp.	UTg₁	°C	53	-	ISO 6721 (DMA)
Tensile Strength	$\sigma_{\scriptscriptstyle T}$	MPa	36.3	42.4	ISO 527-2
Tensile Modulus	Eτ	GPa	1.9	2.0	ISO 527-2
Tensile Elongation	$\epsilon_{\scriptscriptstyle T}$	%	49.6	31.2	ISO 527-2
Flexural Strength	$\sigma_{\scriptscriptstyle F}$	MPa	61.8	67.0	ISO 178
Flexural Modulus	E _F	GPa	1.8	1.9	ISO 178
Flexural Elongation	$\epsilon_{\scriptscriptstyle{\sf F}}$	%	>12.0	>12.0	ISO 178
28 Day Water Uptake (coupon size 60x60x1mm)	-	mg (%)	-	28.4 (0.6)	ISO 62
ILSS (8 x RE301H8, 50% resin content)	X _{ILSS}	MPa	-	32.3	ISO 14130

^{***}initial cure of 24 hours at 21°C

ADHESIVE PERFORMANCE (AFTER 16 HRS AT 50°C CURE)

PROPERTIES	SYMBOL	UNITS	PLYWOOD	TEAK	STEEL	TEST STANDARD
Lapshear Strength	τ	MPa	2.1 (Failed in wood)	-	14.9	BS 5350 Part C5
Lapshear Strength Wet Retention (saturated for 28 days at 23°C in water)	$ au_{ ext{wet}}$	MPa	-		16.2	BS 5350 Part C5

AMPRO™ BIO RESIN & EXTRA-SLOW HARDENER

MIXING AND HANDLING

PROPERTY	UNITS	AMPRO™ BIO RESIN	EXTRA-SLOW HARDENER	MIXED SYSTEM
Colour	-	Brown Tint	Amber	Brown Tint
Mix ratio by weight	Parts by weight	100	30	-
Mix ratio by volume	Parts by volume	3	1	-
Density at 21 °C (ISO 1183-1B)	g/cm ³	1.10	1.00	1.08

COMPONENT & MIXED SYSTEM PROPERTIES*

PROPERTY	UNITS	15°C	25°C	TEST METHOD
AMPRO™ BIO Resin Viscosity	сР	3028	979	-
AMPRO™ Extra-Slow Hardener Viscosity	сР	385	198	-
Initial Mixed System Viscosity	сР	-	1044	-

WORKING TIME PROPERTIES*

PROPERTY	UNITS	20°C	TEST METHOD
Thin-Film Gel-time	hrs:min	02:14	-
Pot-life (150 g, mixed in water)	hrs:min	01:04	Tecam Gel Time
Tack-off Time	hrs:min	06:00	Internal Gurit Method
Earliest Sanding Time**	hrs:min	20:00	Internal Gurit Method

[&]quot;working time properties are highly subjective to ambient conditions and should be used as an approximate guideline for all AMPRO™ systems
**it is not recommended to apply at low temperatures, but a cure temperatures as low as +5°C is possible

AMBIENT CURE THERMAL PERFORMANCE PROGRESSION at 21°C

PROPERTY PROGRESSION AT 21°C	SYMBOL	UNITS	7 DAYS	14 DAYS	21 DAYS	28 DAYS	TEST STANDARD
Glass Transition Temperature	Tg ₁	°C	42	44	46	47	ISO 6721 (DMA)

CURED RESIN PROPERTIES

PROPERTIES	SYMBOL	UNITS	28 DAYS AT 21°C	16 HRS AT 50°C***	TEST STANDARD
Glass Transition Temperature	Tg ₁	°C	47	49	ISO 6721 (DMA)
Ultimate Glass Transition Temp.	UTg₁	°C	49	TBC	ISO 6721 (DMA)
Tensile Strength	$\sigma_{\scriptscriptstyle T}$	MPa	36.0	32.0	ISO 527-2
Tensile Modulus	Eτ	GPa	1.8	1.6	ISO 527-2
Tensile Elongation	€т	%	47.9	49.2	ISO 527-2
Flexural Strength	$\sigma_{\scriptscriptstyle F}$	MPa	60.1	62.1	ISO 178
Flexural Modulus	E _F	GPa	1.8	1.8	ISO 178
Flexural Elongation	$\epsilon_{\scriptscriptstyle{\sf F}}$	%	>12.0	>12.0	ISO 178
28 Day Water Uptake (coupon size 60x60x1mm)	-	mg (%)	-	- 45.3 (0.7)	
ILSS (8 x RE301H8, 50% resin content)	X _{ILSS}	MPa	-	29.5	ISO 14130

ADHESIVE PERFORMANCE (AFTER 16 HRS AT 50°C CURE)

PROPERTIES	SYMBOL	UNITS	PLYWOOD	TEAK	STEEL	TEST STANDARD
Lapshear Strength	τ	MPa	2.2 (failed in wood)	9.5 (failed in wood)	15.6	BS 5350 Part C5
Lapshear Strength Wet Retention (saturated for 28 days at 23°C in water)	$ au_{ m wet}$	MPa	-	-	TBC	BS 5350 Part C5

NOTICE

All advice, instruction or recommendation is given in good faith but the selling Gurit entity (the Company) only warrants that advice in writing is given with reasonable skill and care. No further duty or responsibility is accepted by the Company. All advice is given subject to the terms and conditions of sale (the Conditions) which are available on request from the Company or may be viewed at Gurit's Website: www.gurit.com/terms-and-conditions.aspx

The Company strongly recommends that Customers make test panels in the final process conditions and conduct appropriate testing of any goods or materials supplied by the Company prior to final use to ensure that they are suitable for the Customer's planned application. Such testing should include testing under conditions as close as possible to those to which the final component may be subjected. The Company specifically excludes any warranty of fitness for purpose of the goods other than as set out in writing by the Company. Due to the varied nature of end-use applications, the Company does, in particular, not warrant that the test panels in the final process conditions and/or the final component pass any fire standards.

The Company reserves the right to change specifications and prices without notice and Customers should satisfy themselves that information relied on by the Customer is that which is currently published by the Company on its website. Any queries may be addressed to the Technical Services Department.

Gurit is continuously reviewing and updating literature. Please ensure that you have the current version by contacting your sales contact and quoting the revision number in the bottom left-hand corner of this page.

TECHNICAL CONTACT INFORMATION

For all other enquiries such as technical queries:

Telephone + 44 1983 828000 (08:30 – 17:00 GMT)

Email technical.support@gurit.com

24-HOUR CHEMICAL EMERGENCY NUMBER

For advice on chemical emergencies, spillages, fires or exposures:

Europe +44 1273 289451 Americas +1 646 844 7309 APAC +65 3158 1412

E customer.support@gurit.com

W www.gurit.com